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Differential Association of Two PTPN22 Coding Variants with
Crohn’s Disease and Ulcerative Colitis
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Suzanne van Sommeren, MD,3 Carlos Cardeña, MD,6 Luis Rodrigo, MD, PhD,7 Juan Luis Mendoza, MD, PhD,8

Carlos Taxonera, MD, PhD,8 Antonio Nieto, MD, PhD,9 Guillermo Alcain, MD,10 Ignacio Cueto, MD,10
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Background: The PTPN22 gene is an important risk factor for human autoimmunity. The aim of this study was to evaluate for the first time

the role of the R263Q PTPN22 polymorphism in ulcerative colitis (UC) and Crohn’s disease (CD), and to reevaluate the association of the

R620W PTPN22 polymorphism with both diseases.

Methods: A total of 1677 UC patients, 1903 CD patients, and 3111 healthy controls from an initial case–control set of Spanish Caucasian

ancestry and two independent sample sets of European ancestry (Dutch and New Zealand) were included in the study. Genotyping was performed

using TaqMan SNP assays for the R263Q (rs33996649) and R620W (rs2476601) PTPN22 polymorphisms. Meta-analysis was performed on

6977 CD patients, 5695 UC patients, and 9254 controls to test the overall effect of the minor allele of R620W and R263Q polymorphisms.

Results: The PTPN22 263Q loss-of-function variant showed initial evidence of association with UC in the Spanish cohort (P ¼ 0.026, odds ra-

tio [OR] ¼ 0.61, 95% confidence interval [CI]: 0.39–0.95), which was confirmed in the meta-analysis (P ¼ 0.013 pooled, OR ¼ 0.69, 95% CI:

0.51–0.93). In contrast, the 263Q allele showed no association with CD (P ¼ 0.22 pooled, OR ¼ 1.16, 95% CI: 0.91–1.47). We found in the

pooled analysis that the PTPN22 620W gain-of-function variant was associated with reduced risk of CD (P ¼ 7.4E-06 pooled OR ¼ 0.81, 95%

CI: 0.75–0.89) but not of UC (P ¼ 0.88 pooled, OR ¼ 0.98, 95% CI: 0.85–1.15).

Conclusions: Our data suggest that two autoimmunity-associated polymorphisms of the PTPN22 gene are differentially associated with CD

and UC. The R263Q polymorphism only associated with UC, whereas the R620W was significantly associated with only CD.

(Inflamm Bowel Dis 2011;17:2287–2294)
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Additional supporting information may be found in the online version of this
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C rohn’s disease (CD) and ulcerative colitis (UC) are the

main types of inflammatory bowel disease (IBD). They

are relapsing and chronic inflammatory disorders that result

from the complex interaction of genetic, immune, and envi-

ronmental factors. It is estimated that the current number of

loci associated with IBD only explain 10%–20% of the

genetic risk attributed to UC and CD. Thus, additional

genetic contributions clearly remain to be discovered.1–4

The protein tyrosine phosphatase nonreceptor 22

(PTPN22) gene encodes the gatekeeper of T-cell receptor

(TCR) signaling, protein tyrosine phosphatase (PTP, also

known as LYP), and as such is a compelling candidate risk

factor for IBD. In T cells, LYP (lymphoid tyrosine phos-

phatase) potently inhibits signaling through dephosphoryl-

ation of several substrates, including the Src-family kinases

Lck and Fyn, as well as ZAP-70 and TCRzeta. Moreover,

PTPN22 has emerged as an important genetic risk factor

for human autoimmunity.5–8 Specifically, two missense sin-

gle nucleotide polymorphisms (SNPs), both with functional

influence,6,8–12 have been associated with autoimmune dis-

eases. The R620W (1858C>T, rs2476601) polymorphism

in exon 14 of PTPN22 was first associated with type 1 dia-

betes (T1D), and subsequently with autoimmune disorders

such as rheumatoid arthritis (RA), systemic lupus erythema-

tosus (SLE), IBD, and other autoimmune diseases.13–16 The

R620W variation disrupts the interaction between Lck and

LYP, leading to reduced phosphorylation of LYP, which

ultimately contributes to gain-of-function inhibition of T-cell

signaling.17 The Q minor allele of R263Q (788G>A,

rs33996649) in exon 10, within the catalytic domain of the

enzyme, is a loss-of-function mutation that confers protec-

tion against development of SLE and RA.12,18

In this study we sought first to determine whether the

newly described amino acid substitution, R263Q (788G>A,

rs33996649) is associated with altered susceptibility to CD

and UC and, second, to reevaluate the influence of the

R620W (1858C>T, rs2476601) polymorphism on these dis-

eases by conducting a case–control study and meta-analysis.

MATERIALS AND METHODS

Case–Control Study

Study Population
A total of 1903 CD patients, 1677 UC patients, and

3111 healthy controls from an initial case–control set of Span-

ish Caucasian ancestry (699 CD patients, 658 UC patients,

and 1685 healthy controls) and two independent sample sets

of European ancestry from The Netherlands (694 CD patients,

548 UC patients, and 863 healthy controls) and New Zealand

(510 CD patients, 471 UC patients, and 563 healthy controls)

were included in the case–control study. All IBD patients

were diagnosed according to standard clinical, endoscopic,

radiologic, and histopathologic criteria.19–21 Control individu-

als were matched by Caucasian origin, age, and gender. Writ-

ten informed consent was obtained from all participants. The

study was approved by the Ethics Committee of the Spanish

and Dutch hospitals, and by the Upper (cases) and Lower

(controls) South Regional Ethics Committees of New Zealand.

PTPN22 Genotyping
DNA from patients and controls was obtained using

standard extraction methods. Samples were genotyped for

SNP rs33996649 using a Custom TaqMan SNP Genotyping

Assay (Applied Biosystems, Foster City, CA). The primer

sequences were: forward 50 TTTGAACTAATGAAGGCCTCT
GTGT 30 and reverse 50 ATTCCTGAGAACTTCAGTGTTTT
CAGT 30. The specific minor groove binder probe sequences

were 50 TTGATCCGGGAAATG 30 and 50 TTGATCCAGGA
AATG 30. The samples were genotyped for rs2476601 poly-

morphism via TaqMan 50 allelic discrimination assay using a

predesigned probe (Part number: C__16021387_20; Applied

Biosystems). To verify the genotyping consistency 10% of

samples from each studied cohort were genotyped twice. The

concordance between original and repeat genotypes was 99%.

The genotype call rate was >90% for all studied populations.

Data Analysis
Deviation from Hardy–Weinberg equilibrium (HWE)

was tested by standard chi-square analysis. The differences in

genotype distribution and allele frequency among cases and

controls were calculated by contingency tables and when nec-

essary by Fisher’s exact test. An association was considered

statistically significant if P < 0.05. Linkage disequilibrium

(LD) measurements (r2) between rs33996649 and rs2476601

were estimated by the expectation-maximization algorithm

using HAPLOVIEW v. 4.1 (VC Broad Institute of MIT and Har-

vard 2008, Cambridge, MA). Case–control association analysis

was performed using PLINK (v. 1.07) (http://pngu.mgh.harvard.

edu/purcell/plink/) to estimate odds ratios (OR) and 95% confi-

dence intervals (CI).22 To test for associations of the PTPN22
polymorphisms with clinical features, a univariate analysis

using v2 or Fisher’s exact test was applied. The Montreal Clas-

sification19 criteria were used to determine the clinical varia-

bles. We compare each variable with the healthy controls and

within cases (see Supporting Information Tables 1–4). Multiple

testing was corrected by false discovery rate control (pFDR).

Analysis was conducted using PLINK (v. 1.07) and Stats Direct

(v. 2.6.6 http://www.statsdirect.com) softwares.

Meta-analysis

Study Selection and Data Extraction
To estimate the common effect of the PTPN22 R620W

polymorphism on IBD we conducted a search on MEDLINE

and PUBMED electronic databases up to April 2010 to identify

available articles in which this polymorphism was genotyped in

patients with CD or UC and healthy controls. The search strat-

egy included Medical Subject Heading (MeSH) terms and text

words as follows: ‘‘Inflammatory Bowel Disease’’ [MeSH] OR
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‘‘Crohn’s Disease’’[MeSH]) OR ‘‘Colitis, Ulcerative’’ [MeSH]

AND ‘‘PTPN22 protein, human ’’[Substance Name] OR

PTPN22. References in the studies were reviewed to identify

additional studies not indexed by MEDLINE.

Studies for the meta-analysis were selected if they met

the following conditions: 1) diagnosis and phenotype was

established by means of the Vienna or Montreal Classifica-

tions19–21; 2) data were collected in Caucasian populations; 3)

the study had a case–control design; 4) the SNPs genotyped

were rs2476601 or rs6679677 (both are in complete linkage dis-

equilibrium in Caucasian populations, http://www.hapmap.org);

5) the study supplied enough information to calculate the OR,

or the authors provided the data by personal communication

(the authors of articles which did not show complete data were

contacted by email); 6) the study provided original data (inde-

pendent of other studies included in the meta-analysis); and 7)

the article was published in a peer-reviewed journal as a full ar-

ticle, not as an abstract or similar type of summary.

Our systematic review of the literature identified 28

potential studies for the meta-analysis of R620W in

IBD.13,16,23–47 A total of 15 studies were not included in our

analysis.13,27,28,31–36,38,39,41,44–46 Five of these were not case–

control studies31,34,35,38,41 and three did not genotype rs2476601

or rs6679677.27,28,36 Another five did not supply enough infor-

mation to calculate the OR.13,32,44–46 One included some sam-

ples of our Spanish cohort33 and another was carried out only

on patients with ileal CD.39

Data Analysis
The analysis of the combined data from all populations

was performed using Stats Direct software, v. 2.6.6. The sum-

marized ORs and CIs were obtained by means of both the ran-

dom (DerSimonian-Laird) and the fixed (Mantel-Haenszel

meta-analysis) effect models. The heterogeneity of ORs among

cohorts was calculated using Breslow-Day test. The statistical

power of the R263Q and R620W meta-analysis was 97%, 99%

for CD, and 96%, 99% for UC, respectively (assuming a P ¼
0.01; disease prevalence of 0.1% and allele frequency of 5%;

done using CaTS software http://www.sph.umich.edu/csg/

abecasis/CaTS/index.html).

RESULTS

R263Q Polymorphism of PTPN22 Is Associated
with Reduced Risk of UC

First we conducted an association study in a case–con-

trol set of Spanish Caucasian ancestry. The distribution of

the allelic frequencies of the two polymorphisms, R263Q

and R620W (Tables 1, 2) were in HWE both in patients and

controls. As previously reported,12,18 no LD between the

PTPN22 R263Q and R620W genetic variants was observed

in any population (r2 < 0.03 for each studied population).

We observed that the 263Q allele was significantly

associated with UC (P ¼ 0.026, OR ¼ 0.61, 95% CI:

0.39–0.95) but not with CD (P ¼ 0.07, OR ¼ 1.34, 95%

CI: 0.97–1.85) (Table 1).

We then conducted a follow-up study in two inde-

pendent Caucasian populations. The case–control analysis

in the Dutch and New Zealand cohorts did not show signif-

icant association with the R263Q polymorphism in either

the CD (Dutch: P ¼ 0.98, OR ¼ 0.99 95%, CI:0.64–1.55,

New Zealand: P ¼ 0.87, OR ¼ 0.95, 95% CI: 0.52–1.74)

or the UC sample sets (Dutch: P ¼ 0.58, OR ¼ 0.87, 95%

CI: 0.53–1.43, New Zealand: P ¼ 0.17, OR ¼ 0.61, 95%

CI: 0.30–1.24) (Table 1).

TABLE 1. Genotype and Allele Frequencies for the R263Q PTPN22 (rs33996649) Polymorphism in Healthy Controls and
IBD Patients from Three Different Populations

Population GG % GA % AA % Allele G % Allele A % P-value OR (95 % CI)

Spanish CD patients (n ¼ 699) 640 91.6 59 8.4 0 0.0 1339 95.8 59 4.2 0.073 1.34 0.97 1.85

UC patients (n ¼ 658) 632 96.0 26 4.0 0 0.0 1290 98.0 26 2.0 0.026 0.61 0.39 0.95

Controls (n ¼ 1685) 1580 93.8 103 6.1 2 0.1 3263 96.8 107 3.2

Dutch CD patients (n ¼ 694) 658 94.8 36 5.2 0 0.0 1352 97.4 36 2.6 0.98 0.99 0.64 1.55

UC patients (n ¼ 548) 523 95.4 25 4.6 0 0.0 1071 97.7 25 2.3 0.58 0.87 0.53 1.43

Controls (n ¼ 863) 818 94.8 45 5.2 0 0.0 1681 97.4 45 2.6

New Zealand CD patients (n ¼ 510) 490 96.1 20 3.9 0 0.0 1000 98.0 20 2.0 0.87 0.95 0.52 1.74

UC patients (n ¼ 471) 459 97.5 12 2.5 0 0.0 930 98.7 12 1.3 0.17 0.61 0.30 1.24

Controls (n ¼ 559) 536 95.9 23 4.1 0 0.0 1095 97.9 23 2.1

Pooled CD patients (n ¼ 1903) 1788 94.0 115 6.0 0 0.0 3691 97.0 115 3.0 0.22a 1.16 0.91 1.47

UC patients (n ¼ 1677) 1614 96.2 63 3.8 0 0.0 3291 98.1 63 1.9 0.013b 0.69 0.51 0.93

Controls (n ¼ 3107) 2934 94.4 171 5.5 2 0.1 6039 97.2 175 2.8

CD, Crohn’s disease’. UC, ulcerative colitis. P-value for the minor allele.
aMeta-analysis calculated through the fixed effects model. Breslow-Day P ¼ 0.44.
bMeta-analysis calculated through the fixed effects model. Breslow-Day P ¼ 0.54.
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Our combined analysis of the three studied Caucasian

sample sets did not reveal a significant association between

the R263Q polymorphism and CD (P ¼ 0.22 pooled,

OR ¼ 1.16, 95% CI: 0.91–1.47) but it did strengthen the

initial association observed in UC in the Spanish sample

set (P ¼ 0.013 pooled, OR ¼ 0.69, 95% CI: 0.51–0.93)

(Table 1; Fig. 1), suggesting that the 263Q variant of the

PTPN22 gene may reduce the risk of UC.

620W Allele of PTPN22 Is Associated
with Reduced Risk of CD

In order to reevaluate the role of the R620W poly-

morphism of the PTPN22 gene on IBD, we conducted a

case–control study in the three Caucasian cohorts. We did

not observe a significant difference in genotype or in the

minor allele frequency (MAF) between CD patients and

healthy controls in the Spanish sample set (P ¼ 0.11, OR

¼ 0.81, 95% CI: 0.62–1.1). In contrast, we observed that

the R620W variant was associated with reduced risk of CD

in the Dutch sample set (P ¼ 0.036, OR ¼ 0.76, 95% CI:

0.58–0.98) and in the New Zealand sample set (P ¼ 0.014,

OR ¼ 0.67, 95% CI: 0.49–0.92) (Table 2). For the UC

analysis, we did not observe a significant difference in

either the Spanish or the New Zealand sample sets for the

R620W polymorphism (Spanish: P ¼ 0.68, OR ¼ 1.05,

95% CI: 0.82–1.35, New Zealand: P ¼ 0.93, OR ¼ 0.99,

95% CI: 0.73–1.32). However, the 620W allele was associ-

ated with a reduced risk of UC in the Dutch sample set

(P ¼ 0.015, OR ¼ 0.70, 95% CI ¼ 0.52–0.93) (Table 2).

We performed a meta-analysis to reevaluate the role

of the R620W polymorphism in IBD. From the remaining

13 studies, three studies fulfilled inclusion criteria for

meta-analysis of the R620W PTPN22 polymorphism in

UC,24,30,37 and Silverberg et al40 provided the minor allele

frequencies of R620W in their initial cohort by personal

communication. In CD, eight studies fulfilled inclusion cri-

teria for meta-analysis of the R620W PTPN22 polymor-

phism,23,25,29,30,37,42,43,47 and Duerr et al26 provided the

minor allele frequencies of R620W in their initial cohort

by personal communication.

A strong association between the 620W variant and

CD was demonstrated (P ¼ 7.4E-06 pooled, OR ¼ 0.81,

95% CI: 0.75–0.89) (Table 2; Fig. 2). This confirms the

association of the reduced risk observed between this allele

and CD in our initial case–control study in the Dutch and

New Zealand sample sets and in the previous meta-analysis

reported by Barrett et al.13 In contrast, no association was

observed between the 620W allele and UC (P ¼ 0.88

pooled, OR ¼ 0.98, 95% CI: 0.85–1.15) (Table 2; Fig. 2).

620W Allele of PTPN22 Is Associated with
Reduced Risk of Ileal Location in CD

We evaluated the possible associations of the R263Q

and R620W variants of PTPN22 with the clinical pheno-

types of UC and CD (Supplementary Tables 1–4). Meta-

analysis revealed the 620W variant was significantly asso-

ciated with reduced risk of ileal location of CD when com-

pared to healthy controls (PFDRcorrected ¼ 9E-03) pooled

OR ¼ 0.64, 95% CI ¼ 0.49-0.84, Supplementary Table 2).

We observed no significant association of the R263Q poly-

morphism with CD or UC clinical manifestations.

DISCUSSION
This article reports for the first time the role of the

newly identified R263Q polymorphism of PTPN22 in IBD.

In addition, we performed a case–control study in Spanish,

Dutch, and New Zealand populations and a meta-analysis

to assess the role of the R620W PTPN22 polymorphism

with CD and UC. Our results indicate that there is a differ-

ential association of the R263Q and R620W polymorphisms

FIGURE 1. Forest plots for the meta-analyses of the PTPN22 R263Q (G788A; rs33996649) polymorphism in CD and UC. The analyses corre-
spond to the frequency of the minor (A) allele in the three Caucasian IBD sample sets.
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with IBD. On the one hand, the PTPN22 263Q loss-of-

function variant is a protective factor for UC, with no rela-

tionship to CD; on the other hand, the 620W gain-of-func-

tion variant confers protection against CD, while showing

no association with UC. The effect size observed between

the R263Q polymorphism and UC (0.69) is similar to that

reported for SLE (i.e., 0.63) by Orru et al,12,18 suggesting

that this polymorphism could be another common genetic

component in autoimmunity. In addition, we confirmed in

the Dutch and New Zealand CD cohorts, together with a

combined analysis, the previously reported protective role

of the 620W allele in CD but not in UC.12,13,23,26,32,39,45–47

Thus, there is support for the hypothesis that both out-

comes of IBD have a partially different genetic component.

On the other hand, we have reported evidence of a reduced

risk factor of the 620W allele in the ileal location of CD.

Nevertheless, these result should be taken cautiously, since

we observed no significant difference when comparing the

ileal location against colonic/ileocolonic location of the dis-

ease. This may be an artifact of low statistical power of

these stratified analyses (i.e., 50%–65% power). Replica-

tion studies are needed to confirm this new finding.

Increased emphasis has been placed in the recent years on

predictive biomarkers to predict the onset or future course

of disease.48 In this regard, the present report supports the

idea that subtle genetic differences combined with assess-

ment of the pattern of critical mediators (i.e., presence of

autoantibodies) may be useful for tracing progression of

the disease.

To determine the immunological implications of the

differential association of R263Q and R620W PTPN22
polymorphisms with CD and UC, functional approaches

are required. Nevertheless, there is strong evidence to sug-

gest that the 263Q allele is a loss-of-function variant which

is less effective in reducing TCR signaling than 263R.12

This supports the hypothesis that positive modulation of

the TCR helps in reestablishing tolerance in at least a sub-

set of autoimmune patients.6,49 This functional evidence, to-

gether with the significant association that we observed with

UC, suggests that TCR signaling is more important in this

disease than in CD. Actually, autoantibodies are more often

detected in UC than in CD patients. It is estimated that

60%–70% of UC patients are positive for atypical antineutro-

philic cytoplasmic antibodies, whereas only few CD patients

present autoantibodies (atypical antineutrophilic cytoplasmic

antibodies 5%–25%, pancreatic autoantibodies 27%–37%,

and thrombophilia-associated antibodies 3%–37%).50

The present study confirms that the 620W allele is

associated with a reduced risk of developing CD, in con-

trast to the increasing risk that this genetic variant confers

to other autoimmune diseases such as T1D, SLE, and

RA.6,14–16 Several authors have shown that 620W PTPN22
is a gain-of-function variant that reduces TCR signaling

leading to decreased elimination of potentially autoreactive

T cells and/or decreased production of natural regulatory T

cells (Treg) (reviewed6). This could explain the loss of toler-

ance that takes place in autoimmune diseases like T1D,

SLE, and RA, but not the protective role 620W allele

appears to confer against CD. A possible explanation could

be that IBD may represent an inappropriate immune

response to the commensal microbiota in a genetically pre-

disposed host,3 mimicking an infection process. This hypoth-

esis is supported by the fact that the 620W allele confers

protection towards some highly prevalent infectious dis-

eases.6 Previous studies have reported a significant protec-

tive role of the 620W allele in tuberculosis (TB).51,52 More-

over, the R263Q polymorphism has been associated with

increasing risk to develop TB,52 the opposite of the reported

FIGURE 2. Forest plots for the meta-analyses of the PTPN22 the R620W (C1858T; rs2476601) polymorphism in CD and UC. The analyses
correspond to the frequency of the minor (T) allele in 12 Caucasian IBD sample sets.
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associations with SLE12 and RA18 and UC in the present

study. Our findings suggest that many of the genetic loci

involved in autoimmunity may be under balanced selection

due to antagonistic pleiotropic effects. Genetic variants such

as R620W and R263Q with opposite effects in different dis-

eases may facilitate the maintenance of common susceptibil-

ity alleles in human populations.6,46,53 Moreover, our results

also support the idea that CD and UC differ in some genetic

risk factors, thereby suggesting the involvement of different

immunological mechanisms with a related nature.24,45,46,54,55
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